Mil-Con Active & Passive GPS Antennas

Product Description

Mil-Con’s rugged, sealed, field-replaceable, shock-mounted GPS Antennas use a commercial quadrifilar helix antenna element in spin-on SMA and TNC versions, as well as, slide-on SMB version. The antennas are designed using compliant RF connection that combines mechanically isolated ceramic antenna elements with integrated weather seals for use in hostile and military environments. Mil-Con offers design and manufacturing capabilities to provide unique solutions for integrating customer selected antenna elements into connector electrical and mechanical packages to meet demanding environmental and mechanical requirements.

Features

- Sealed to 1 meter of water depth.
- Advanced assembly tuning to maintain antenna element match and minimize losses.
- PkZ® technology allows a compliant connection to the element; avoiding stress to solder joints and mechanical shock to ceramic element.
- Compatible with end-user mating interfaces, such as: SMA, TNC, and slide-on SMB. Other interfaces could be made available at customers’ request.
- Adaptable to a wide range of COTS or proprietary antenna elements.

Applications

- Hand-held communication devices and two-way radios.
- GPS tracking communication devices; satellite up-links, etc.
- Stationary or portable platforms; buoy, etc.
- Deployable telecommunications equipment.

Antenna Types

- Passive (integrated element matching circuit).
- Active (integrated LNA).

Both GPS antenna types are available in the same connector options.
Materials and Finishes

Radome—Thermoplastic, Black Color.
Body—Brass, Gold Or Electroless Nickel-Plated.
Insulators—PTFE, White Color, And Thermoplastic, Various Colors.
Center Contact—Brass Or BeCu; Gold-Plated.
Antenna Element—Ceramic Loaded Miniature Quadrifilar Helix.
Seals And Shock Mounts—Silicone Rubber, Various Colors.

Mechanical and Electrical Performance

Typical Passive GPS Antenna Tuning
Typical Active GPS Antenna Tuning

![Graph showing typical active GPS antenna tuning](image)

GPS Antennas Mechanical Performance

<table>
<thead>
<tr>
<th>Test Type</th>
<th>Passive Antenna</th>
<th>Active Antenna</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermal Shock</td>
<td>-55°C to +85°C, 5 cycles, 1 hour at each temperature extreme</td>
<td>-40°C to +85°C, 5 cycles, 1 hour at each temperature extreme</td>
</tr>
<tr>
<td>Leak</td>
<td>Underwater @ 5 psi for 1 minute minimum</td>
<td>Underwater @ 5 psi for 1 minute minimum</td>
</tr>
<tr>
<td>Moisture Resistance</td>
<td>Method IV of EIA-364-3, except for Step 7a</td>
<td>Method IV of EIA-364-3, except for Step 7a</td>
</tr>
<tr>
<td>Durability</td>
<td>500 mates minimum</td>
<td>500 mates minimum</td>
</tr>
<tr>
<td>Temperature Range</td>
<td>-55°C to +85°C</td>
<td>-40°C to +85°C</td>
</tr>
</tbody>
</table>

Mil-Con, Inc.
555 Pond Drive, Wood Dale, IL 60191 USA
Tel: (630) 595-2366 • Fax: (630) 616-2299
www.mil-coninc.com
GPS Antennas Electrical Performance

<table>
<thead>
<tr>
<th>Characteristic/Requirement</th>
<th>Passive Antennas</th>
<th>Active Antennas</th>
</tr>
</thead>
<tbody>
<tr>
<td>D.C.</td>
<td>D.C. Continuity from Coaxial Center Pin to Ground</td>
<td>Require 2.8 to 3.6 VDC and present a max load of 15 mA</td>
</tr>
<tr>
<td>* VSWR over the L1 C/A Frequency Range (1571.42 +/- 1.023 MHz)</td>
<td>< 1.92</td>
<td>< 2.3 when powered</td>
</tr>
<tr>
<td>Bandwidth (typical)</td>
<td>Ref. MEM (magenta) trace on Active Antenna Plot, lower graph</td>
<td>Ref. S12 (green trace) on the Active Antenna Plot, lower graph</td>
</tr>
<tr>
<td>* Center Frequency Accuracy (frequency of optimum circular polarization)</td>
<td>+/- 1.0 MHz by impedance test</td>
<td>+/- 1.0 MHz by relative gain test</td>
</tr>
<tr>
<td>Pattern</td>
<td>Approximately Cardiod on axis away from feed point > 120 degrees, 135 degrees typical</td>
<td></td>
</tr>
<tr>
<td>Gain</td>
<td>-2.8 dBic optimally, -4.0 dBic typical (on zenith when lengthwise direction of antenna is vertical)</td>
<td>Preamp: 22 dBtypical*, with 1.3 dB max Noise Figure, and 10 dBm typical Third Order Intercept</td>
</tr>
</tbody>
</table>

*Indicates a 100% tested specification or characteristic

Size and Dimensions

*SMA Interfacial Seal Will Be Achieved Only When Mated To 2033-1100-02P Adapter. Consult Factory For Custom Applications.
Reverse Polarity TNC Could Be Made Available.
Please Consult Factory For Details.

Reverse Polarity TNC Could Be Made Available. Please Consult Factory For Details.

SMA Interfacial Seal Will Be Achieved Only When Mated To 2033-1100-02P Adapter. Consult Factory For Custom Applications.

THE ITEM(S) / TECHNICAL DATA ON THIS / PRECEDING PAGE(S) ARE CONTROLLED BY THE DEPARTMENT OF STATE, INTERNATIONAL TRAFFIC IN ARMS REGULATION(S) (ITAR) 22 CFR PARTS 120-130 AND CANNOT BE EXPORTED FROM THE UNITED STATES OR SHARED WITH A FOREIGN NATIONAL WITHOUT PRIOR APPROVAL FROM THE UNITED STATES GOVERNMENT.